Concept for CBRN Full Facepiece Air Purifying Respirator Standard ### (1) Goal: Develop a NIOSH, NPPTL, tight fitting, full facepiece, air purifying respirator standard that addresses CBRN materials identified as inhalation hazards and/or possible terrorist hazards using a minimum number of filters for emergency responders. **Target:** Four (4) filters | | Short Duration | Long Duration | |--------------|----------------|---------------| | TIMs | 15 minutes* | 60 minutes* | | TIMs plus CO | 15 minutes* | 60 minutes* | ^{*} Indicated times are for illustration only. Actual times will be established from hazard modeling and developmental test results. ## (2) Hazards: NIOSH has been evaluating various lists of chemicals that could be deployed as a result of a terrorist incident. In an effort to reduce the number of certification tests necessary as part of a Chemical Biological Radiological Nuclear (CBRN) Air-Purifying Respirator (APR) standard, efforts have been underway to categorize potential respiratory hazards into families with a representative test chemical identified for each family. The following information is a synopsis of this effort to date. The current carbon technology used in canisters and cartridges were reviewed from existing certification standards. The current standards for gas masks in Europe and the U.S. (NIOSH) were reviewed. The military purchasing specification for ASZM-T carbon for C2A1 military canisters was also reviewed. The most common parameters identified from the review of the military specification and the certification standards were the middle range certification challenges. Some of the test chemicals were considered to be redundant, since other test chemicals would guarantee the carbon effectiveness against the chemicals in question (Chlorine, Hydrogen Chloride, Hydrogen Fluoride, Phosphine, CS & CN Tear Gases). Carbon tetrachloride and Cyclohexane are the representative chemicals for organic vapors. Meeting the organic vapor test for a cartridge will provide protection for all organic vapors having vapor pressures less than those of carbon tetrachloride and cyclohexane. From the CWA /TIC list, approximately 61 organic chemicals are cover by this logic, including GB and HD. The acid gases (32 chemicals) are covered by cyanogen chloride, hydrogen cyanide, hydrogen sulfide, and sulfur dioxide. Ammonia represents the base gases, and covers another 4 chemicals on the list. Ethylene oxide, formaldehyde, phosgene, phosphine and nitrogen dioxide are considered special case chemicals. Phosphine is a hydride and must be removed catalytically (copper⁺² and silver impregnates on carbon). Therefore, 108 of the 151 chemicals can be addressed through testing these 11 chemicals. Only one organic vapor test agent, cyclohexane or carbon tetrachloride, will be used reducing the list to 10 test chemicals. Nine of the test chemicals are listed in ITF 25 | Chemicals | Organization Using as Test Agent | |----------------------|----------------------------------| | Ammonia | NIOSH & EN | | Cyclohexane | Organic Vapor- EN | | Carbon Tetrachloride | Organic Vapor- NIOSH | | Cyanogen Chloride | Military | | Formaldehyde | NIOSH | | Hydrogen Cyanide | NIOSH, EN & Military | | Hydrogen Sulfide | NIOSH & EN | | Nitrogen Dioxide | NIOSH & EN | | Phosgene | Military | | Sulfur Dioxide | NIOSH & EN | | Phosphine | NIOSH | | Carbon Monoxide | NIOSH | **Hazard mapping**: Conduct modeling based on the 'Most Credible Event' (MCE) scenarios developed for the open-circuit SCBA CBRN standard to determine warm zone operational scenarios. Add or delete scenarios depending on the Toxic Industrial Material (TIM) being evaluated. ## (3) Respirator Use: - A. Warm Use: Less than IDLH concentrations, to REL; sustained warm zone support operations; long term use for decon, traffic control, rehabilitation, rescue and recovery; agent known & quantified. - B. Crisis Provision: Contingency use for short duration, above IDLH concentrations and high physiological (flow) demand possible; Contingency for unforeseen factors such as secondary device or pockets of entrapped hazard. | | | Long Duration | Crisis | Short Duration | |-----------------------------|--|-----------------------|---------------------|-----------------------| | Filter | Configuration | Less Than IDLH | Panic Demand | Less Than IDLH | | Filter #1,
TIM's less CO | Full Facepiece
Back or Chest
Mounted | 60 Minutes* | 5 Minutes* | | | Filter #2,
TIM's plus CO | Full Facepiece
Back or Chest
Mounted | 60 Minutes* | 5 Minutes* | | | Filter #3,
TIM's less CO | Full Facepiece
Mask Mounted | | 5 Minutes* | 15 Minutes* | | Filter #4,
TIM's plus CO | Full Facepiece
Mask Mounted | | 5 Minutes* | 15 Minutes* | ^{*} Indicated times are for illustration only. Actual times will be established from hazard modeling and developmental test results. ## (4) Filter Test Requirements: ### Test Matrix for CBRN Air Purifying Respirators; June 12, 2002 | Test
Order | Penetration
and
Permeation
Testing | Particulate
Testing | Service Life
Testing,
64 lpm flow | Service
Life
Testing,
high
flow | 42 CFR
Testing | Drop
(not
order
specific) | Human Factors
(not order
specific) | Interchange-
ability | |---------------|---|---|---|---|--|---|--|-------------------------| | | 6 APR systems
(3 - GB and
3 - HD) | 60 canister
Units | 60 canister
units | 12
canister
units | TBD APR systems | 6 Canister
Units
(2 per
test) | APR SystemsTBD (2 APR systems per test) | APR Systems
TBD | | 1. | Hot diurnal | Hot diurnal | Hot diurnal | Service
Life
Testing,
100
LPM | Canister in
Parallel
Resistance
Requirements,
84.112 | Major
axis
vertical,
air inlet
down | Hydration (3) | EN 136 &
EN 148 | | 2. | Cold constant | Cold constant | Cold constant | | Breathing
Tube, 84.115 | Major
axis
vertical,
air inlet
up | Optical Haze | | | 3. | Humidity | Humidity | Humidity | | Facepieces;
eyepieces
minimum
requirements,
84.119 | Major
axis
horizontal | Communications | | | 4. | Transportation vibration | Transportation vibration | Transportation vibration | | Exhalation valve leakage test, 84.123 (2) | | Field of View | | | 5. | System testing (GB or HD) | Initial
breathing
resistance,
84.122 | Initial
breathing
resistance,
84.122 | | Determine CO ₂ levels ⁽⁴⁾ | | Donning | | | 6. | | DOP Testing,
84.181 | Service Life
Testing, 64
LPM | | | | Fogging | | | 7. | | Final breathing resistance, 84.122 | Final breathing resistance, 84.122 | | | | LRPL Testing | | #### Notes: - 1. The six (6) APR systems may be used in the Penetration and Permeation test. - 2. RCT-APR-STP-0004, Determination of Exhalation Valve Leakage Test, APR, STP, dated March 7, 2002 for HF Breathing Resistance: 3 Respirators. - 3. RCT-APR-STP-0014, Determination of Leakage of Drinking Tube and Accessories for Respirator Facepieces STP, dated January 14, 2002, for HF Hydration/Drinking Tube: 3 Respirators. - 4. RCT-APR-STP-0064, Determination of Facepiece Carbon Dioxide and Oxygen Concentration Levels of Tight Fitting Powered Air Purifying Respirators with the Blower Unit Off and Tight Fitting Non-Powered Gas Masks with a Tight Fitting Neck Seal STP, dated April 26, 2001 for HF CO2 Test: 3 Respirators. $\alpha \cdot \cdot \cdot (1)$ | | Warm Zone | Crisis | |-------------------|--------------|-----------------------| | | Non IDLH (2) | Greater than IDLH (2) | | 64 lpm flow | X | | | high flow 100 lpm | | X | | Rough handling | X | X | - (1) Crisis is a high use concentration at a high flow rate, 100 liters, per minute. - (2) Same test concentrations, different flow rates ### (5) Special Test Requirements: # (5)(a) Chemical Agent Permeation and Penetration Resistance Against Distilled Mustard (HD) and Sarin (GB) Agent Requirement The air purifying respirator system, including all components and accessories shall resist the permeation and penetration of distilled sulfur mustard (HD) and Sarin (GB) chemical agents when tested on an upper-torso manikin connected to a breathing machine operating at an air flow rate of 40 liters per minute (L/min), 36 respirations per minute, 1.1 liters tidal volume. Test requirements for distilled sulfur mustard (HD) are shown in Table 1. Table 1: Simultaneous Liquid and Vapor Challenge of APR with Distilled Sulfur Mustard (HD) | 1 4010 11 81111 | racio 1. Simultaneo as Enquita una vapor Chanengo of the tevital Bistinea Santai Mastara (113) | | | | | | | |-----------------|--|--------------------------------------|--|--------------------------------------|---|-----------------------------------|------------------------------------| | Agent | Challenge
Concentration | Duration
of
Challenge
(min) | Breathing
Machine
Airflow
Rate
(L/min) | Maximum Peak
Excursion
(mg/m³) | Maximum Breakthrough (concentration integrated over Minimum Service Life) (mg-min/m³) | Number
of
Systems
Tested | Minimum
Service Life
(hours) | | HD-Vapor | 300 mg/m ³ | TBD ⁽¹⁾ ** | | 0.60 (3) | TBD ⁽⁴⁾ | 2 | TBD (2)** | | HD-Liquid | TBD | TBD | 40 | 0.60 | IBD | 3 | IBD (=/** | ^{**} Duration of challenge and minimum service life will be determined from hazard modeling and developmental test results. ⁽¹⁾ Vapor challenge concentration will start immediately after the liquid drops have been applied and the test chamber has been sealed. ⁽²⁾ The test period begins upon start of initial vapor generation. ⁽³⁾ Three consecutive sequential test data points at or exceeding 0.6 mg/m³ will collectively constitute a failure where each test value is based on a detector sample time of approximately 2 minutes. ⁽⁴⁾ The cumulative Ct including all peak data points must not be exceeded for the duration of the test. Test requirements for Sarin (GB) agent are shown in Table 2. Table 2: Vapor Challenge of APR with Sarin (GB) | Challenge
Agent | Vapor
Concentration
(mg/m³) | Vapor
Challenge
Time
(minutes) | Breathing
Machine
Airflow Rate
(L/min) | Maximum Peak
Excursion
mg/m ³ | Maximum Breakthrough (concentration integrated over Minimum Service Life) (mg-min/m³) | Number
of
Systems
Tested | Minimum
Service Life
(hours) | |--------------------|-----------------------------------|---|---|--|---|-----------------------------------|------------------------------------| | GB | 2,000 mg/m ³ | TBD (1)** | 40 | 0.087_(3) | TBD ⁽⁴⁾ | 3 | TBD (2)** | ^{**} Duration of challenge and minimum service life will be determined from hazard modeling and developmental test results. ## (5)(b) Laboratory Respiratory Protection Level (LRPL) Test Requirement: The measured laboratory respiratory protection level (LRPL) for each full facepiece, air purifying respirator shall be 1000, when the APR facepiece is tested in a negative pressure mode in an atmosphere containing 20-40 mg/m³ corn oil aerosol of a mass median aerodynamic diameter of 0.4 to 0.6 micrometers. ⁽¹⁾ The vapor challenge concentration generation will be initiated immediately after test chamber has been sealed. ⁽²⁾ The test period begins upon initial generation of vapor concentration. ⁽³⁾ Three consecutive sequential test data points at or exceeding 0.087 mg/m³ will collectively constitute a failure where each test value is based on a detector sample time of approximately 2 minutes. ⁽⁴⁾ The cumulative Ct including all peak data points must not be exceeded for the duration of the test. ## (6) Design Requirements: # (6)(a) Filter Canister Test Challenge and Breakthru Concentrations | | Test Concentration Draft | Breakthru Concentration Draft | |---------------------------------------|--------------------------|-------------------------------| | Ammonia | 2500 | 12.5 | | Cyanogen Chloride Carbon Tetrachoride | 300
3000 | 5 | | Cyclohexane | 3900 | 10 | | Formaldehyde | 3500 | 1 | | Hydrogen Cyanide | 940 | 4.7 | | Hydrogen Sulfide | 1000 | 5.0 | | Nitrogen Dioxide | 200 | I | | Phosgene | 250 | 1.25 | | Phosphine | 1500 | 5 | | Sulfur Dioxide | 1500 | 5 | # (6)(a) Interchangeable consumable filter cartridges and canisters Interchangeable consumable filter cartridges and canisters are not required, as part of CBRN APR certification, but optional approval requirements for manufacturers will be identified. Interchangeability concept will use existing European standards, EN 136 and EN 148. #### (6)(b) Rough handling (transportability, temperature range, survivability) | Test | Test Method | Test Condition | Duration | Pass / Fail
Criteria ¹ | |---------------|---------------------------|---|--|---| | Hot Diurnal | Mil-Std-810F,
501.4 | 71 °C max, cyclical | 3 Weeks | Gas Life,
System Permeation /
Penetration | | Cold Constant | Mil-Std-810F,
502.4 | Basic Cold,
-32 °C | 3 Days | Gas Life,
System Permeation /
Penetration | | Humidity | Mil-Std-810E, 507.3 | Table 507.3-II,
Natural Cycle,
Cycle 1 | 5 Days,
Quick Look | Gas Life,
System Permeation /
Penetration | | Vibration | Mil-Std-810F,
514.5 | US Highway
Vibration,
Unrestrained
Figure 514.5C-1 | 12 Hours / Axis,
36 Hours Total
(12,000 miles) | Gas Life,
System Permeation /
Penetration | | Drop | 3 foot drop onto concrete | Filter Only,
3 Axis | N/A | Gas Life,
System Permeation /
Penetration | (1) Pass / Fail Criteria is determined after APR has been subjected to Hot, Cold, Humidity and Vibration environmental exposure sequence order. Pass / Fail Criteria for Drop test is determined after 3 drops, 1 drop per axis, is completed. # (6)(c) Operational Characteristics (donning, field of view/acuity, flow, resistance, storage life, usage life) #### (6)(c)(1) Full Facepiece Fogging The respirator performance rating for resistance to fogging shall be greater than or equal to 70% when tested in accordance to the fogging test procedure, Appendix A: #### (6)(c)(2) Communications The respirator performance rating for communications shall be greater than or equal to 70% when tested in accordance with the communications test procedure, Appendix B. #### (6)(c)(3) Breathing Resistance Resistance to air flow shall be measured in the facepiece of a CBRN air purifying respirator mounted on a test fixture with air flowing at a continuous rate of 85 liters per minute both before and after each gas service life bench test. The maximum allowable resistance to air flow is as follows: | | Chin Style | Non Facepiece Mounted | |-------------|-----------------------------|-----------------------------| | Inhalation: | • | - | | Initial | $65 \text{ mm H}_2\text{O}$ | $70 \text{ mm H}_2\text{O}$ | | Final (1) | $80 \text{ mm H}_2\text{O}$ | $85 \text{ mm H}_2\text{O}$ | | | | | | Exhalation: | $26 \text{ mm H}_2\text{O}$ | $26 \text{ mm H}_2\text{O}$ | ⁽¹⁾ Measured at end of service life #### (6)(c)(4) Field of View The full facepiece equipped with a single visor shall be designed so that the effective field of vision shall be not less than 70% related to the natural field of vision, and the overlapped field of vision related to the natural overlapped field of vision, shall not be less than 80%. A full facepiece equipped with two eyepieces shall be designed so that the effective field of vision shall not be less than 70% related to the natural field of vision, and the overlapped field of vision, shall not be less than 20%. The field of view test procedure will be developed based on procedures of EN 136. #### (6)(c)(5) Haze (Lens Abrasion) Specimen CBRN APR facepiece lenses shall be tested for abrasion resistance and the average value of the tested specimens shall not exhibit a delta haze greater than 14%. The abrasion resistance test procedure will be developed based on NFPA 1981 standard procedures. ### (6)(c)(6) Carbon Dioxide The maximum allowable average inhaled CO₂ concentration shall be less than or equal to 2%. Test procedure RCT-APR-STP-0064 is used for carbon dioxide testing. #### (6)(c)(7) Hydration For CBRN APR respirators equipped with a hydration facility, the CBRN APR respirator shall meet all requirements of the CBRN APR standard with the hydration facility in place. In addition, dry drinking tube valves, valve seats, or seals will be subjected to a suction of 75mm water column height while in a normal operating position. Leakage between the valve and the valve seat shall not exceed 30 milliliters per minute. Test procedure RCT-APR-STP-0014 shall be used to test the hydration facility for leakage. #### (6)(d) Long term field auditing/maintenance procedures/inspection #### (6)(e) Extracts from 42 CFR, Part 84 #### (6)(e)(1) 42 CFR, Part 84 Subparts A, B, D, E, F and G apply in total: - Subpart A: General Provisions - Subpart B: Application For Approval - Subpart D: Approval and Disapproval - Subpart E: Quality Control - Subpart F: Classification of Approved Respirators - Subpart G: General Construction and Performance # (6)(e)(2) 42 CFR, Part 84 Subpart I; the following paragraphs apply: - 84.110 Gas Masks; description. - 84.111 Gas masks; required components - 84.112 Canisters and cartridges in parallel; resistance requirements - 84.113 Canisters and cartridges; color and markings; requirements - 84.114 Filters used with canisters and cartridges; location; replacement - 84.115 Breathing tubes; minimum requirements - 84.116 Harnesses; installation and construction; minimum requirements - 84.117 Gas mask containers; minimum requirements - 84.118 Half-mask facepieces, full facepieces, and mouthpieces; fit; minimum requirements - 84.119 Facepieces; eyepieces; minimum requirements - 84.120 Inhalation and exhalation valves; minimum requirements - 84.121 Head harnesses; minimum requirements - 84.123 Exhalation valve leakage test #### Appendix A – Full Facepiece Fogging Two individuals with a visual acuity of 20/70 better shall perform each test while wearing the apparatus according to manufacturers directions. Test participants shall be assigned a properly sized and fitted test respirator for each environmental exposure condition. All participants shall be trained in the donning and usage of the respirator per manufacturer's instructions. Prior to testing, visual acuity shall be recorded for each subject while wearing the respirator using Snellen Eye Test charts or an equivalent method. #### Test 1 The APR shall be cold soaked in an environmental chamber at minus 21°C (-6°F) for 4 hours. At the start of each cold temperature wear trial a test participant shall enter the test chamber (maintained at -21°C) and sit quietly for five minutes. Once the five minute rest period transpires, subjects shall self-don their assigned respirator. A visual acuity test shall then be administered to quantify the impact of any lens fogging on vision. The test participant shall then complete a 12-minute work-rest-work regimen comprised of five minutes of exercise, 2 minutes of rest, and an additional five minutes of exercise with the exercise periods consisting of treadmill walking at 4.8 km/hr (3 mph) on a level grade. Visual acuity tests shall be repeated at the end of each walk period (i.e., after five minutes of walking and at the end of the 12 minute period immediately following the treadmill walk). #### Test 2 The APR shall be conditioned in an environmental chamber at 15.5°C (60°F), 75% RH for 4 hours. At the start of each cool/humid temperature wear trial a test participant shall enter the test chamber (maintained at 15.5 C) and sit quietly for five minutes. Once the five minute rest period transpires, subjects shall self-don their assigned respirator. A visual acuity test shall then be administered to quantify the impact of any lens fogging on vision. The test participant shall then complete a 12-minute work-rest-work regimen comprised of five minutes of exercise, 2 minutes of rest, and an additional five minutes of exercise with the exercise periods consisting of treadmill walking at 4.8 km/hr (3 mph) on a level grade. Visual acuity tests shall be repeated at the end of each walk period. #### **Interpretation of Results** Visual acuity scores obtained during each environmental test with the respirator shall be divided by a subject's visual acuity score obtained with the mask prior to testing to calculate a *performance rating* using the following equation: Performance Rating (%) = $$VA_{CHAMBEREX} / VA_{INITIAL} X 100$$ (1) where $VA_{chamber\ x}$ = visual acuity score during chamber test at time x and VA_{intial} = visual acuity score obtained with the mask prior to testing. Visual acuity performance ratings calculated from measurements taken post-donning and at the end of each treadmill walk shall be averaged for each individual subject to obtain an average visual acuity performance rating for each subject based on the environmental condition. Average *performance rating* for each test participant shall be greater than or equal to 70% for both Test 1 and Test 2 to meet the fogging requirement. #### Appendix B—Communication 1) Speech intelligibility testing shall be accomplished through the use of the Modified Rhyme Test (MRT), which evaluates a listener's ability to comprehend single words and provides an indication of speech transmission of the selected words. The MRT consists of multiple lists of 50 monosyllabic, phonetically balanced words each. A sample word list is provided in Table 1. Table 1. Sample MRT stimulus word list | 1. lick | 11. same | 21. pad | 31. pip | 41. name | |----------|----------|----------|----------|----------| | 2. beat | 12. peal | 22. din | 32. seen | 42. soil | | 3. puff | 13. kit | 23. sit | 33. way | 43. fin | | 4. cook | 14. sat | 24. win | 34. west | 44. cuff | | 5. tip | 15. sin | 25. teak | 35. pace | 45. heal | | 6. rave | 16. gold | 26. dent | 36. bat | 46. hark | | 7. hang | 17. buff | 27. sub | 37. mop | 47. heat | | 8. till | 18. lay | 28. led | 38. big | 48. then | | 9. math | 19. nun | 29. tot | 39. tab | 49. law | | 10. sale | 20. must | 30. dub | 40. case | 50. bean | - 2) Three test listeners consisting of two males and one female shall comprise the subject test panel. All participants shall be tested for "normal" hearing prior to testing by a qualified individual. - 3) An additional five individuals (four males and one female) without obvious speech defects or strong regional accents shall serve as MRT speakers. - 4) All participants shall be trained in the donning and usage of the respirator per manufacturer's instructions and all shall pass a qualitative facepiece-to-face fit check according to the manufacturer's instructions. #### 5) Procedure: - a. The three test listeners shall be seated opposite a single test speaker for each MRT trial at a distance of 3 meters (10 ft), and they shall be facing one another. Each listener shall be given a multiple choice answer sheet or positioned before a computer and monitor that will be used to input his or her responses. - b. Data for the MRT will be collected with a steady background noise of 60 dBA consisting of a broadband "pink" noise. A Brüel and Kjaer Type 1405 Noise Generator or equivalent will be used to produce the background noise. Background noise levels will be monitored at a position near the listening panel using a Type 2 digital sound level meter and recorded at the beginning, middle, and end of each MRT session. - c. The test speaker shall present each stimulus word using the carrier phrase "The word is _____." - d. Speakers will be instructed and trained to maintain a constant output volume at 75 dBA to 85 dBA for all presented words. A Type 2 digital sound level meter will be positioned in front of the speaker within his or her sight to provide feedback concerning the loudness of their voice during testing. Speaker output levels will be recorded at the beginning, middle, and end of each MRT session for verification - e. Listeners will select the word that was perceived to be spoken from a list of six response words presented on the computer monitor by clicking a button on the monitor that corresponds to the perceived word. If given a paper answer form, subjects will circle their selection. A sample answer sheet is provided in Figure 1. - f. Test listeners shall then provide a thumbs-up hand signal to the speaker to cue him or her to say the next word. - g. An individual speaker will present a total of 50 stimulus words to complete one MRT trial. A different speaker shall then be used to present the next MRT trial. Test speakers will continue to rotate among the speaker test panel until all trials have been complete. A sample test matrix is provided in Table 2. - h. Data will be obtained without the respirator and with the respirator worn and operated per the manufacturer's instructions by both speakers and listeners. All conditions shall be randomly assigned and a different word list shall be used for each test. Again, an example of a test matrix is provided in Table 2. Table 2. Sample MRT test matrix | Speaker | Speaker Condition | Listeners' Condition | Word list | |---------|-------------------|----------------------|-----------| | 1 | No mask | No mask | 1 | | 2 | No mask | No mask | 3 | | 3 | Masked | Masked | 5 | | 4 | Masked | Masked | 7 | | 5 | No mask | No mask | 9 | | 2 | Masked | Masked | 2 | | 4 | No mask | No mask | 4 | | 1 | Masked | Masked | 6 | | 5 | Masked | Masked | 8 | | 3 | No mask | No mask | 10 | - i. A total of 10 MRT trials shall be performed. The 10 trials will result in a total of 15 MRT scores (five per listener) for the unworn mask condition and 15 scores for the worn condition. - j. Listener performance on the MRT shall be scored in terms of the percentage of words correctly identified using the equation: % correct = $$(number correct - (number incorrect/5)) * 2$$ (1) The equation accounts for chance or guessing made possible by the multiple-choice form of the answer sheet (*Human Engineering Guide to Equipment Design*, American Institutes for Research, Washington, DC, 1972). - k. Individual listeners' scores for the unworn and worn respirator conditions shall be averaged for each condition. - 1. Each individual listener's average score with the respirator shall be divided by their average unmasked MRT score to calculate a *performance rating* (ref equation (2)). (Because the listening subjects serve as their own controls, the performance rating allows the effect of the respirator condition to be isolated from the effect of the individual). Performance rating (%) = $$\left(\frac{MRT \% correct \text{ with respirator}}{MRT \% correct \text{ without respirator}}\right) \times 100$$ (2) m. The communications requirement shall be met if the average *performance rating* is greater than or equal to 70%. | MRT Listener I | Response Sheet | <u>Date</u> : | Listener Position: | <u>TP#</u> : | |----------------|----------------|---------------|--------------------|--------------| | Scenario: | Spea | ker: TP#: | Mask Condition: | | # ** 1-A ** | | 1-A | | | | | | | | | | | | | | | |----------|------|-------|------|---------|------|-------|-------|----|--------|------|------|-------|-------|-------|-------| | 1 | kick | lick | sick | 14 | sack | sad | sap | 27 | sup | sub | sud | 40 | cake | came | cave | | | tick | wick | pick | | sag | sat | sass | | sum | sun | sung | | cane | case | cape | | | | | | | | | | | | | | • | | | | | 2 | neat | beat | seat | 15 | sit | sip | sill | 28 | wed | fed | bed | 41 | tame | came | fame | | | meat | feat | heat | | sick | sin | sing | | led | shed | red | | same | name | game | | | | | | | | | | | | | | | | | | | 3 | pun | puff | pup | 16 | fold | sold | gold | 29 | pot | hot | lot | 42 | toil | boil | foil | | | pub | pus | puck | | hold | cold | told | | not | tot | got | | coil | oil | soil | | | | | | | | | | | | | | | | | | | 4 | hook | shook | book | 17 | but | bug | bus | 30 | duck | dud | dung | 43 | fig | fizz | fit | | | took | cook | look | | buff | bun | buck | | dun | dug | dub | | fib | fin | fill | | | | | | | | | | | | | | | | | | | 5 | lip | hip | dip | 18 | late | lake | lay | 31 | pit | pin | pig | 44 | cuss | cud | cup | | | sip | rip | tip | | lame | lane | lace | | pill | pick | pip | | cut | cub | cuff | | | | - | | | , | | | | | | | | | | | | 6 | rake | rate | ray | 19 | run | bun | fun | 32 | seethe | seek | seen | 45 | heel | peel | keel | | | raze | race | rave | | sun | nun | gun | | seed | seep | seem | | feel | eel | reel | | | | | | | | | | | , | | | | | ** | | | 7 | fang | bang | hang | 20 | dust | _ | must | 33 | say | pay | may | 46 | mark | bark | dark | | | sang | gang | rang | | bust | just | rust | | gay | way | day | | lark | hark | park | | | | | | | , | | | | | | | | | | | | 8 | will | hill | kill | 21 | path | 1 | pass | 34 | best | west | nest | 47 | heath | heave | heap | | <u> </u> | bill | fill | till | | pat | pad | pan | | vest | test | rest | | heat | heal | hear | | | | | | | | | | | , | | | | | | | | 9 | map | mat | math | 22 | dip | dim | din | 35 | page | pane | pace | 48 | then | den | ten | | | mad | mass | man | | dill | did | dig | | pave | pale | pay | | pen | hen | men | | | | | | | | | | | | | | | | | | | 10 | pale | sale | bale | _23 | fit | hit | bit | 36 | bash | bat | ban | 49 | law | saw | paw | | | gale | male | tale | | sit | kit | wit | | back | bath | bad | | jaw | raw | thaw | | L | | | 2 1 | | | | | | | | | | | | | | 11 | sane | sake | safe | 24 | tin | fin | sin | 37 | hop | cop | shop | 50 | beat | beak | beach | | | save | same | sale | | win | pin | din | L | mop | pop | top | | beam | bean | bead | | 10 | | | т | | | | | | | | | | | | | | 12 | - | peach | peas | 25 | tear | teal | teak | 38 | dig | wig | big | | | | | | | peal | peace | peat | | team | tease | teach | L | fig | pig | rig | Score | | | | | 10 | 1. | | | | | | | | | | | | | | | | 13 | kin | kid | kick | 26 | dent | tent | rent | 39 | tack | tan | tab | | | | | | Ш | king | kit | kill | | went | sent | bent | | tang | tam | tap | | | | |